Monday, February 25, 2013

Graphene: A material that multiplies the power of light

Graphene: A material that multiplies the power of light [ Back to EurekAlert! ] Public release date: 24-Feb-2013
[ | E-mail | Share Share ]

Contact: Brook Hardwick
brook.hardwick@icfo.es
34-935-542-214
ICFO-The Institute of Photonic Sciences

ICFO scientists show that graphene is highly efficient in converting light to electricity

Bottles, packaging, furniture, car parts... all made of plastic. Today we find it difficult to imagine our lives without this key material that revolutionized technology over the last century. There is wide-spread optimism in the scientific community that graphene will provide similar paradigm shifting advances in the decades to come. Mobile phones that fold, transparent and flexible solar panels, extra thin computers... the list of potential applications is endless. Scientists, industries and the European Commission are so convinced of the potential of graphene to revolutionize the world economy that they promise an injection of 1.000 million in graphene research.

The most recent discovery published in Nature Physics and made by researchers at the Institute of Photonic Science (ICFO), in collaboration with Massachusetts Institute of Technology, USA, Max Planck Institute for Polymer Research, Germany, and Graphenea S.L. Donostia-San Sebastian, Spain, demonstrate that graphene is able to convert a single photon that it absorbs into multiple electrons that could drive electric current (excited electrons) a very promising discovery that makes graphene an important alternative material for light detection and harvesting technologies, now based on conventional semiconductors like silicon.

"In most materials, one absorbed photon generates one electron, but in the case of graphene, we have seen that one absorbed photon is able to produce many excited electrons, and therefore generate larger electrical signals" explains Frank Koppens, group leader at ICFO. This feature makes graphene an ideal building block for any device that relies on converting light into electricity. In particular, it enables efficient light detectors and potentially also solar cells that can harvest light energy from the full solar spectrum with lower loss.

The experiment consisted in sending a known number of photons with different energies (different colors) onto a monolayer of graphene. "We have seen that high energy photons (e.g. violet) are converted into a larger number of excited electrons than low energy photons (e.g. infrared). The observed relation between the photon energy and the number of generated excited electrons shows that graphene converts light into electricity with very high efficiency. Even though it was already speculated that graphene holds potential for light-to-electricity conversion, it now turns out that it is even more suitable than expected!" explains Tielrooij, researcher at ICFO.

Although there are some issues for direct applications, such as graphene's low absorption, graphene holds the potential to cause radical changes in many technologies that are currently based on conventional semiconductors. "It was known that graphene is able to absorb a very large spectrum of light colors. However now we know that once the material has absorbed light, the energy conversion efficiency is very high. Our next challenge will be to find ways of extracting the electrical current and enhance the absorption of graphene. Then we will be able to design graphene devices that detect light more efficiently and could potentially even lead to more efficient solar cells." concludes Koppens.

###

Paper Reference:

"Photoexcitation cascade and multiple hot-carrier generation in graphene". K.J. Tielrooij, J.C.W. Song, S.A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L.S. Levitov and F.H.L. Koppens.

About ICFO:

ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia - Barcelona Tech. ICFO is a center of research excellence devoted to the sciences and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts more than 250 researchers and PhD students working in more than 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program which is financed by Fundacin Privada Cellex Barcelona. Groundbreaking research in graphene is being carried out at ICFO and through key collaborative research partnerships such as the FET Graphene Flagship. NEST Fellow Prof. Frank Koppens is the co-leader of the Optoelectonics work package within Flagship program.

Contact details:

Brook Hardwick
Communications

Albert Mundet
Communications
T: 34-93-554-2246
E: albert.mundet@icfo.es

Klaas-JanTielrooij
T: 34-691-361-210
E: klaas-jan.tielrooij@icfo.es

Frank Koppens
T: 34-935-534-163
E: frank.koppens@icfo.es

Links:

Frank Koppens' Group: http://koppensgroup.icfo.es/
Graphene at ICFO: http://www.icfo.eu/graphene/index.htm


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Graphene: A material that multiplies the power of light [ Back to EurekAlert! ] Public release date: 24-Feb-2013
[ | E-mail | Share Share ]

Contact: Brook Hardwick
brook.hardwick@icfo.es
34-935-542-214
ICFO-The Institute of Photonic Sciences

ICFO scientists show that graphene is highly efficient in converting light to electricity

Bottles, packaging, furniture, car parts... all made of plastic. Today we find it difficult to imagine our lives without this key material that revolutionized technology over the last century. There is wide-spread optimism in the scientific community that graphene will provide similar paradigm shifting advances in the decades to come. Mobile phones that fold, transparent and flexible solar panels, extra thin computers... the list of potential applications is endless. Scientists, industries and the European Commission are so convinced of the potential of graphene to revolutionize the world economy that they promise an injection of 1.000 million in graphene research.

The most recent discovery published in Nature Physics and made by researchers at the Institute of Photonic Science (ICFO), in collaboration with Massachusetts Institute of Technology, USA, Max Planck Institute for Polymer Research, Germany, and Graphenea S.L. Donostia-San Sebastian, Spain, demonstrate that graphene is able to convert a single photon that it absorbs into multiple electrons that could drive electric current (excited electrons) a very promising discovery that makes graphene an important alternative material for light detection and harvesting technologies, now based on conventional semiconductors like silicon.

"In most materials, one absorbed photon generates one electron, but in the case of graphene, we have seen that one absorbed photon is able to produce many excited electrons, and therefore generate larger electrical signals" explains Frank Koppens, group leader at ICFO. This feature makes graphene an ideal building block for any device that relies on converting light into electricity. In particular, it enables efficient light detectors and potentially also solar cells that can harvest light energy from the full solar spectrum with lower loss.

The experiment consisted in sending a known number of photons with different energies (different colors) onto a monolayer of graphene. "We have seen that high energy photons (e.g. violet) are converted into a larger number of excited electrons than low energy photons (e.g. infrared). The observed relation between the photon energy and the number of generated excited electrons shows that graphene converts light into electricity with very high efficiency. Even though it was already speculated that graphene holds potential for light-to-electricity conversion, it now turns out that it is even more suitable than expected!" explains Tielrooij, researcher at ICFO.

Although there are some issues for direct applications, such as graphene's low absorption, graphene holds the potential to cause radical changes in many technologies that are currently based on conventional semiconductors. "It was known that graphene is able to absorb a very large spectrum of light colors. However now we know that once the material has absorbed light, the energy conversion efficiency is very high. Our next challenge will be to find ways of extracting the electrical current and enhance the absorption of graphene. Then we will be able to design graphene devices that detect light more efficiently and could potentially even lead to more efficient solar cells." concludes Koppens.

###

Paper Reference:

"Photoexcitation cascade and multiple hot-carrier generation in graphene". K.J. Tielrooij, J.C.W. Song, S.A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L.S. Levitov and F.H.L. Koppens.

About ICFO:

ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia - Barcelona Tech. ICFO is a center of research excellence devoted to the sciences and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts more than 250 researchers and PhD students working in more than 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program which is financed by Fundacin Privada Cellex Barcelona. Groundbreaking research in graphene is being carried out at ICFO and through key collaborative research partnerships such as the FET Graphene Flagship. NEST Fellow Prof. Frank Koppens is the co-leader of the Optoelectonics work package within Flagship program.

Contact details:

Brook Hardwick
Communications

Albert Mundet
Communications
T: 34-93-554-2246
E: albert.mundet@icfo.es

Klaas-JanTielrooij
T: 34-691-361-210
E: klaas-jan.tielrooij@icfo.es

Frank Koppens
T: 34-935-534-163
E: frank.koppens@icfo.es

Links:

Frank Koppens' Group: http://koppensgroup.icfo.es/
Graphene at ICFO: http://www.icfo.eu/graphene/index.htm


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2013-02/iiop-gam022213.php

etta james songs east west shrine game underworld awakening

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.